Soluble complement receptor 1 preserves endothelial barrier function and microcirculation in postischemic pancreatitis in the rat.
نویسندگان
چکیده
Components of the activated complement cascade are considered to play a pivotal role in ischemia-reperfusion-induced organ injury. With the use of intravital epifluorescence microscopy, we investigated the effect of complement inhibition by the recombinant soluble complement receptor 1 (sCR1; TP10) on the effect of macromolecular microvascular permeability, functional capillary perfusion, and leukocyte endothelium interaction in postischemic pancreatitis. Anaesthetized Sprague-Dawley rats were subjected to 60 min of normothermic pancreatic ischemia induced by microclipping of the blood-supplying arteries of the organ. Rats who received sCR1 (15 mg/kg body wt iv; n = 7) during reperfusion showed a significant reduction of permeability (1.77 +/- 1.34 x 10(-8) cm/s; n = 7) of tetramethylrhodamine isothiocyanate-labeled albumin injected 90 min after the onset of reperfusion compared with vehicle-treated animals (6.95 +/- 1.56 x 10(-8) cm/s; n = 7). At 120 min after the onset of reperfusion, the length of red blood cell-perfused capillaries (functional capillary density) was significantly improved (from 279 +/- 15.7 to 330 +/- 3.7 cm(-1); n = 7) and the number of leukocytes adherent to postcapillary venules was significantly reduced (from 314 +/- 87 to 163 +/- 71 mm(-2); n = 7) by sCR1 compared with vehicle treatment. Complement inhibition by sCR1 effectively ameliorates pancreatic ischemia-reperfusion-induced microcirculatory disturbances and might be considered for treatment of postischemic pancreatitis.
منابع مشابه
Soluble Complement Receptor 1 (sCR1) Preserves Endothelial Barrier Function and Microcirculation in Postischemic Pancreatitis in the Rat
E. von Dobschuetz, O. Bleiziffer, S. Pahernik, M. Dellian, T. Hoffmann, K. Messmer Department of Generaland VisceralSurgery, Albert-Ludwigs-University, Freiburg, Germany Institute for Surgical Research, Ludwig-Maximilians-University, Munich, Germany Department of Urology, University of Mainz, Mainz, Germany Department of Otorhinolaryngology, Ludwig-Maximilians-University, Munich, Germany Maria-...
متن کاملSoluble complement receptor type 1 inhibits the complement pathway and prevents contractile failure in the postischemic heart. Evidence that complement activation is required for neutrophil-mediated reperfusion injury.
BACKGROUND Complement-mediated neutrophil activation has been hypothesized to be an important mechanism of reperfusion injury. It has been proposed that soluble complement receptor 1 (sCR1), a potent inhibitor of both classical and alternative complement pathways, may prevent the complement-dependent activation of polymorphonuclear leukocytes (PMNs) that occurs within postischemic myocardium an...
متن کاملP 61: MicroRNA as a Therapeutic Tool to Prevent Blood Brain Barrier Dysfunction in Neuroinflammation
Endothelial cells present in brain are unique and differ from other peripheral tissues in a number of ways, which ensures specific brain endothelial barrier properties. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation. Various microRNAs (miRNA) have been discovered in different cellular components of the blood bran barrier (BBB). miRNAs a...
متن کاملCandesartan Attenuates Ischemic Brain Edema and Protects the Blood–Brain Barrier Integrity from Ischemia/Reperfusion Injury in Rats
Background: Angiotensin II (Ang II) has an important role on cerebral microcirculation however, its direct roles in terms of ischemic brain edema need to be clarified. This study evaluated the role of central Ang II by using candesartan, as an AT1 receptor blocker, in the brain edema formation and blood-brain barrier (BBB) disruption caused by ischemia/reperfusion (I/R) injuries in rat. Methods...
متن کاملSpironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells
Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 286 5 شماره
صفحات -
تاریخ انتشار 2004